Статистическую обработку данных по технецию провести не удалось, т.к. лезет много мусора (так как аббревиатура Tc, tc очень распространенная - например, критическая температура). Но, тем не менее, кое-что интересного накопать удалось. Первое упоминание о технеции как ингибиторе коррозии отностися к 1955 году. Что примечательно - эффект обнаружен в Оук Ридж - это заведение всегда работало, и продолжает работать на "войну". Эффектом заинтересовались, и начали изучать - есть несколько работ 1956 года (ниже приведена ссылка только на одну). Затем - молчок аж на 10 лет - вполне вероятно, что эффектом заинтересовались военные, и все публикации прекратились до 1966 года, когда этот же мужик опубликовал статью уже более академического характера (реферат приведен ниже). Примечательно, что он и в 1966 году работал в Оук Ридж, т.е. логично предположить, что он все годы там и продолжал работать, и "копать" по этой тематике. Единственное, что меня смущает - в обзорной статье 1966 года указано 45 ссылок. Но такого количества ссылок на технеций я категорически не нахожу. Могу предположить, что большинство ссылок из этих 45 - это статьи про другие элементы, указанные в обзорной статье (например, Mn, Tc, Re, Cr, Mo, W).
К сожалению, по русским работам, как я и предполагал ранее, сказать почти ничего нельзя - в открытую печать ничего не просачивалось до середины 70-х годов, когда В.И.Спицын тоже начал публиковаться по этой тематике (реферат приведен ниже).
Позволю себе озвучить свое предварительное мнение по поводу технеция: 1959 г еще было рановато "сливать" технеций супостатам. ИМХО, 3-4 года - слишком короткий срок, чтобы в СССР могли понять, имеет ли эффект практическое применение в военной области. Ну, конечно, если в СССР эффект обнаружили еще раньше, допустим, в 1950 г, то тогда да - к 1959 г технеций уже могли "слить".
Pertechnetate ion as an inhibitor of corrosion
By Cartiledge, G. H.
Journal of the American Chemical Society (1955), 77, 2658-9.
Company/Organization
Oak Ridge Natl. Lab.
Oak Ridge, TN
The prediction that of all the elements in groups V to VIII, technetium, as TcO4-, was the most likely to possess the properties responsible for inhibition of corrosion was amply confirmed. Mild C steels are effectively protected by 5-50 p.p.m. of Tc in aerated distd. water at temps. up to 250°. Specimens kept over 2 years at room temp. showed no evidence of attack. Inhibition was achieved under very corrosive conditions without depositing more than 3 × 1012 atoms/sq. cm. of Tc. The perrhenate ion does not inhibit, although its gross properties are otherwise very similar to those of the pertechnetate ion.
Copyright © 2012 American Chemical Society. All Rights Reserved.
The mechanism of the inhibition of corrosion by the pertechnetate ion. III. Studies on the perrhenate ion
By Cartledge, G. H.
Journal of Physical Chemistry (1956), 60, 32-6.
Company/Organization
Oak Ridge Natl. Lab.
Oak Ridge, TN
ReO4-, which is very similar to TcO4- in many respects, differing from it radically in failing to inhibit corrosion under aerated conditions. Radioactive Re186 was used, in part, to eliminate the possibility that the radioactivity of Tc is involved in the difference. Measurements of the electrode potential of electrolytic Fe in the presence of KReO4 and Na2SO4 demonstrated the weakness of the ennobling effect of the ReO4- in aerated solns. and the greater susceptibility of this effect to competition with the SO4-- in comparison with the ennobling effect of the TcO4-. In the absence of air, no ennobling by the ReO4- was observed. The results were applied to a discussion of the hypothesis that interfacial polarizations arising from the internal charge distribution of the TcO4- are the source of its action.
Copyright © 2012 American Chemical Society. All Rights Reserved.
The mechanism of the action of inorganic inhibitors
By Cartledge, Groves H.
British Dental Journal (1966), 1(8), 293-302.
Company/Organization
Oak Ridge Natl. Lab.
Oak Ridge, TN, USA
Relative to the inhibition of the corrosion of Fe and steel via the pertechnetate ion (TcO4-), historical developments of its use are outlined and specific reference is made to the chem. and nuclear properties that make it useful for inhibition studies including half-life, oxidn. state, assocd. compds., etc. In air, inhibition was effective at KTcO4 concns. as low as 5 × 10-5M or 5 ppm. Tc in soln., ∼0.1 that for Cr-salt inhibition; assocd. color changes are included. Comparisons were made of the inhibition efficiency of XO42- inhibitors with X = Mn, Tc, Re, Mo, and W; the inhibitor itself appears to have an effect which does not necessarily depend on its oxidizing power, the insoly. of its salts, or the buffering action of its anions. Competitive adsorption appears to be involved as indicated by antagonistic features between inhibitors and other anions. Relative effects of O2 and inhibitor are discussed. With reference to the noncathodic action of reducible inhibitors, potentiostatic measurements with both TcO4- and CrO42- showed that: (1) A truly passive state was 1st produced on Fe. (2) The max. c.d. preceding passivation was very much smaller than that required when passivation is effected in a non-inhibiting electrolyte. (3) Passivation needed only the passage of a few millicoulombs/cm.2 compared to noninhibiting media. (4) In the TcO4- media, β-counting showed passivation was achieved with no measurable redn. of the TcO4 ion. Both CrO4 and TcO4 ions greatly facilitate the passivation process by an action not involving their own redn. Cathodic c.d. obtainable under inhibiting conditions are small in magnitude over a wide range of potentials and cannot supply sufficient c.d. to induce anodic passivation were it not for addnl. actions that do not depend upon their redn.; inhibition depends essentially on non-cathodic actions. Ion-exchange measurements on passive surfaces showed the essential dynamic equil. between the surface film and the surrounding electrolyte. Data are also included for the effect of TcO4- on the anodic polarization of Co. The data emphasized that the inhibition site of action was the boundary layer of mol. thickness where lattice atoms and components of the electrolyte meet. The chem. behavior of the metal is significant also, particularly with regard to its valence state, its soly., and complex-compd. formation characteristics, etc.; also significant is the structure and distribution of charge within the inhibiting species. If the metal can be passivated in the presence of inhibitor, a small amt. of insol. product helps to stabilize the passive film, this being formed between metal and inhibitor. 45 references.
Copyright © 2012 American Chemical Society. All Rights Reserved.
Electrochemical and corrosion characteristics of technetium and stainless steel alloyed with technetium
By Spitsyn, V. I.; Kurtepov, M. M.; Baru, R. A.
Doklady Akademii Nauk SSSR (1976), 229(3), 673-5 [Chem. Tech.].
The corrosion rate of Tc was detd. based on the potentiostatic electrodeposition of Tc from 10 N H2SO4 and 2 N HCl on stainless steel 0Kh18N10T [12742-94-8] monitored by the relative radioactivities of the soln. and the deposit. The anodic and cathodic characteristics of Tc demonstrated its applicability as an alloying metal to increase the corrosion resistance of stainless steels. The corrosion rates of stainless steel 000Kh18N10 [11109-50-5] and the same alloyed with 1% Tc in 5 N H2SO4 were 1 and 0.02 mm/year, resp. Alloying with Tc also inhibited the pitting corrosion in 0.1-2.5 N NaCl
Copyright © 2012 American Chemical Society. All Rights Reserved.