Мирный фатум
Валерий Чумаков
«Радиоактивный бойскаут»
Юный Дэвид Хан ходил в школу в городе Колумбусе штата Огайо, любил футбол и был неплохим питчером бейсбольной команды. Его родители, Кен и Патти Хан, развелись, и Дэвид жил с отцом и его новой женой Кэтти Миссинг, а по выходным ездил к матери в соседний Цинциннати. У той были свои проблемы: ее новый избранник сильно пил, и ей было не до сына. Пожалуй, единственным человеком, кто сумел понять душу подростка, оказался его сводный дед, отец Кэтти, который и подарил юному бойскауту на десятилетие толстую «Золотую книгу химических экспериментов».
Химия так захватила Дэвида, что уже спустя два года он принялся за отцовские университетские учебники и соорудил в своей спальне настоящую химическую лабораторию. В 13 лет он уже готовил порох, в 14 дорос до нитроглицерина. Тут, как и положено, произошел взрыв, в котором, к счастью, никто не пострадал, а вот спальня была разрушена практически полностью. После отцовской порки остатки лаборатории ликвидировали, но у Дэвида была запасная площадка, оборудованная в сарае у мамы, в Цинциннати. Там-то и развернулись основные события.
Потом отец Дэвида винил во всем организацию бойскаутов и непомерное честолюбие сына, который во что бы то ни стало хотел получить высший знак отличия — Скаутского Орла. Но для этого требовалось совершить что-то экстраординарное и полезное. 10 мая 1991 года четырнадцатилетний Дэвид Хан сдал своему скаутмастеру Джо Ауито брошюру о проблемах ядерной энергетики, написанную для получения очередного скаутского значка. При ее подготовке Дэвид обращался за помощью в Вестингхаусское электрическое и Американское ядерное общества, в Эдисоновский электрический институт, а также в компании, занимающиеся управлением атомными электростанциями. И везде встречал понимание и искреннюю поддержку. В качестве дополнения к брошюре прилагалась модель ядерного реактора, сделанная из алюминиевой пивной банки, вешалки для одежды, соломинок для колы и резинок.
Однако для кипящей души бойскаута все это было слишком мелко, и следующим этапом своей работы он выбрал строительство настоящего, пусть и миниатюрного, ядерного реактора. Как и положено, серьезное дело началось с покупки инструмента: по почте был заказан гейгеровский счетчик, который Дэвид установил на свой «Понтиак-6000» и отправился по окрестностям в поисках радиоактивных материалов. Не найдя ничего достойного внимания, он сменил тактику и, составив список подходящих организаций, стал рассылать десятки писем в день. В них он представлялся школьным учителем и просил оказать информационную помощь по вопросам ядерной физики. К прежним адресатам добавились Министерство энергетики США, Комиссия по ядерному регулированию и другие учреждения. В ответ он получил горы информации, большей частью бесполезной, но некоторые организации все же оказали юному ядерщику поистине неоценимые услуги. Так, начальник отдела производства и распределения радиоизотопов Комиссии по ядерному регулированию Дональд Эрб сразу проникся глубокой симпатией к «профессору Хану» и вступил с ним в длительную научную переписку.
Спустя неполных четыре месяца Дэвид знал, как в самых обыденных вещах найти 14 разных радиоактивных изотопов. Например, америций-241 применялся в датчиках задымления, радий-226 — в старых часах со светящимися стрелками, торий-232 — в сетках-рассекателях газовых фонарей, а уран-235 встречался в черной руде (pitchblend).
Его выбор пал на америций-241, при распаде которого испускаются энергичные альфа-частицы — ядра гелия. В компании, поставляющей датчики дыма, он приобрел сотню бракованных устройств по доллару за штуку якобы для школьного проекта, а заодно узнал, что крошечное количество америция в них, во избежание утечек, запаяно в маленьких золотых капсулах. Дэвид извлек америций, поместил его в свинцовый корпус с небольшим отверстием в одной из стенок, которое закрыл алюминиевой фольгой. Алюминий захватывает альфа-частицы и испускает нейтроны — получается нейтронная пушка, под воздействием которой многие элементы могут становиться радиоактивными. Для проверки она была направлена на кусок парафина, и счетчик Гейгера зарегистрировал выбитые нейтронами протоны. Так Дэвид Хан убедился в работоспособности своего второго ядерного инструмента.
Теперь дело было за топливом для реактора. Оптимальным вариантом казался уран-235. Удалось даже заполучить кусок урановой руды: его в качестве образца прислала «профессору Хану» чехословацкая фирма, поставлявшая урановые препараты университетам. Однако, несмотря на все усилия, Дэвиду не удалось очистить уран, содержавшийся в руде. Тогда он переключился на другой изотоп — торий-232, который при облучении нейтронами превращается в радиоактивный уран-233. На складе уцененных товаров бойскаут приобрел около тысячи сеток-рассекателей для газовых фонарей с тугоплавким ториевым покрытием. Паяльной лампой он пережег их в золу. Затем, накупив на 1000 долларов литиевых батареек, кусачками извлек литий, смешал его с золой и нагрел. Литий отобрал из золы кислород, и Дэвид получил относительно чистый торий. Оставалось только направить на него нейтронный луч и ждать, когда образуется уран.
Однако мощности «нейтронной пушки» явно не хватало, и Дэвид решил усовершенствовать ее, заменив америций радием. Сначала он просто скупал старые часы и приборы со светящимися стрелками и счищал с них краску. Но однажды гейгеровский счетчик навел его на старинные часы, в которых «завалялся» целый пузырек с радиевой краской. Для очистки радия Дэвид использовал сульфат бария, который талантливому юноше подарили в рентгенологическом отделении соседнего госпиталя. Смешав барий с краской, он расплавил получившийся состав и пропустил его через кофейный фильтр. Барий абсорбировал примеси и застрял в фильтре, а радий, растворившись в воде, прошел через него беспрепятственно. Высушив жидкость, Дэвид поместил выпавший радиевый осадок в свинцовый контейнер. Отверстие, через которое вылетали альфа-частицы, он прикрыл уже не алюминием, а бериллием, украденным его приятелем из университетской лаборатории. Кстати, о преимуществах бериллия еще в самом начале работы ему рассказал все тот же Дональд Эрб.
В середине 1990-х действующий ядерный реактор построил подросток, мечтавший заработать таким образом высший знак скаутского отличия. Фото: EAST NEWS
Под воздействием новой нейтронной пушки радиоактивность тория стала постепенно расти, а значит, в нем пошли ядерные превращения. Но вот уран на облучение почти не реагировал. И вновь на помощь пришел Дональд Эрб, подсказавший, что нейтроны слишком энергичны для захвата ядрами урана. Для их замедления лучше всего подходил сверхтяжелый водород — тритий. Он применялся в ночных прицелах для спортивных охотничьих луков, и Дэвид под разными именами заказывал их себе, соскабливал тритий и возвращал изделия с претензиями к качеству. С тритиевым замедлителем дело явно пошло на лад.
Теперь наступила очередь создания самого реактора. Дэвид держал в голове весьма современную идею реактора бридерного типа, в котором по мере расхода топлива испускаемые им нейтроны нарабатывают новое топливо в окружающем реактор слое. Америций и радий были без всякой заботы о безопасности извлечены из своих свинцовых «пушек», смешаны с алюминиевым и бериллиевым порошком и завернуты в алюминиевую фольгу. Получилось ядро импровизированного реактора, во все стороны пышущее нейтронами. Этот шар Дэвид в несколько слоев обернул одеялом, содержащим кубики ториевой золы и урановой руды и обмотал снаружи толстым слоем скотча.
Конечно, «реактор» был далек от совершенства. Но его ионизирующее излучение уверенно росло — за три недели оно увеличилось вдвое. Реактор стал понемногу нагреваться, и вскоре гейгеровский счетчик начинал трещать уже в сотне метров от подпольной лаборатории. Только тогда юноша понял, что игра зашла слишком далеко и пора «завязывать». Он разобрал свой реактор, сложил уран и торий в ящик для инструментов, радий и америций оставил в подвале, а все сопутствующие материалы решил вывезти в лес и захоронить. Погрузкой, во избежание ненужных вопросов, он занялся глухой ночью. Помешал делу полицейский наряд, заинтересовавшийся, что это в такой час грузит в машину подозрительный подросток. В багажнике полицейские обнаружили массу странных вещей: запаянные свинцовые трубки, сломанные часы, провода, ртутные выключатели, фонарные корпуса, химические реактивы и около 50 завернутых в фольгу упаковок с неизвестным порошком. Среди всего этого выделялся закрытый на замок ящик, тщательно завернутый в некое подобие свинцового пончо. Открыть его Дэвид отказался, признавшись, что содержимое ящика сильно радиоактивно.
Какой реакции можно было ожидать? В три часа ночи в офис окружной полиции пришло сообщение о том, что местным нарядом задержана машина с взрывным устройством, предположительно — с ядерной бомбой. Надо сказать, это было не так уж далеко от истины. Создать полноценный ядерный заряд — дело все-таки сложное и дорогое, а вот собрать или наработать радиоактивных элементов, а потом распылить их с помощью обычного взрыва, как это случилось на Чернобыльской АЭС, — посильная задача даже для школьника, что и показал Дэвид Хан в своих экспериментах.
Спустя почти год после ареста Дэвида представители Агентства по охране окружающей среды добились судебного решения о сносе сарая-лаборатории. Его демонтаж и захоронение на свалке радиоактивных отходов обошлось родителям «радиоактивного бойскаута» в 60 000 долларов. Сам Дэвид после колледжа завербовался в армию и служил сержантом на атомном авианосце ВМФ США «Энтерпрайз». Правда, зная о его хобби, к ядерному реактору его близко не подпускали. «Я уверен, что своими опытами отнял у себя не больше пяти лет жизни, — сказал он как-то журналисту. — Поэтому у меня еще есть время сделать для людей что-нибудь полезное».
В 2007 году Дэвид Хан был вновь арестован полицией за воровство детекторов дыма...
Утечки радиации
Например, при ревизии на японском заводе по переработке радиоактивного топлива в 2003 году недосчитались 206 килограммов хранившегося там плутония, притом что плутония на заводе было не так уж много — всего около семи тонн. Примерно половину недостачи с некоторыми натяжками удалось объяснить, а остальное просто объявили ошибками учета. В 1987 году в заброшенной бразильской клинике бомжи и дети нашли емкости со светящейся пастой, которой стали украшать себя. В итоге 4 человека погибли, более 240 заболели, пришлось дезактивировать 85 домов и проверить 34 тысячи человек — красивая паста оказалась забытым препаратом радиоактивного цезия-137.
В мире тысячи организаций работают с радио активными элементами. И как бы ни были серьезны меры безопасности, то там, то здесь они будут нарушаться. По данным МАГАТЭ, только за последние восемь лет XX века было документировано 376 случаев незаконной продажи ядерных отходов и радиоактивных материалов, из которых 175 имели место на территории бывшего СССР. Можно лишь гадать, сколько делящихся материалов находится сейчас на международном черном рынке.